Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment

نویسنده

  • Yujin Hoshida
چکیده

Gene-expression signature-based disease classification and clinical outcome prediction has not been widely introduced in clinical medicine as initially expected, mainly due to the lack of extensive validation needed for its clinical deployment. Obstacles include variable measurement in microarray assay, inconsistent assay platform, analytical requirement for comparable pair of training and test datasets, etc. Furthermore, as medical device helping clinical decision making, the prediction needs to be made for each single patient with a measure of its reliability. To address these issues, there is a need for flexible prediction method less sensitive to difference in experimental and analytical conditions, applicable to each single patient, and providing measure of prediction confidence. The nearest template prediction (NTP) method provides a convenient way to make class prediction with assessment of prediction confidence computed in each single patient's gene-expression data using only a list of signature genes and a test dataset. We demonstrate that the method can be flexibly applied to cross-platform, cross-species, and multiclass predictions without any optimization of analysis parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prediction Model of Domestic Violence Against Women Based on Alexithymia and Family Performance with Differentiation Mediation

Introduction: Domestic violence is the cause of most physical and psychological damages in women. The purpose of this study is to predict domestic violence against women based on Alexithymia and family performance by mediating differentiation in women visiting to comprehensive urban health services centers in Bojnourd. Methods: The present study is a structural type and the statistical populati...

متن کامل

A Novel Fuzzy Based Method for Heart Rate Variability Prediction

Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...

متن کامل

A Novel Continuous KNN Prediction Algorithm to Improve Manufacturing Policies in a VMI Supply Chain

This paper examines and compares various manufacturing policies which manufacturer may adopt so as to improve the performance of a vendor managed inventory (VMI) partnership. The goal is to maximize the combined cumulative profit of supply chain while minimizing relevant inventory management costs. The supply chain is a two-level system with a single manufacturer and single retailer at each lev...

متن کامل

Bayesian Classifier with K-nearest Neighbor Density Estimation for Slope Collapse Prediction

Heavy rainfall and typhoon oftentimes cause the collapse of hillslopes across mountain roads. Disastrous consequences of slope collapses necessitate the approach for predicting their occurrences. In practice, slope collapse prediction can be formulated as a deterministic classification problem with two class labels, namely “collapse” and “non-collapse”. Nevertheless, due to the criticality and ...

متن کامل

Multi-represented Classification Based on Confidence Estimation

Complex objects are often described by multiple representations modeling various aspects and using various feature transformations. To integrate all information into classification, the common way is to train a classifier on each representation and combine the results based on the local class probabilities. In this paper, we derive so-called confidence estimates for each of the classifiers refl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010